Fuzzy conjunction (triangular norm, t-norm)

binary operation A : [0, 1]* — [0, 1] such that, for all «, 8, € [0, 1]:

aNB=BNa (commutativity)
aN(BAY)=(aAB)Ay (associativity)

B<v= A B <« Ay (monotonicity)

aNl=a (boundary condition)

Theorem: a A0 =0.

(T3)
Proof: Using (T3) and (T4): aA0 < 1A0 =2

(e




Examples of fuzzy conjunctions

Standard conjunction (min, Godel, Zadeh, . . . ):
a A f = min(a, B8).
Y ukasiewicz conjunction (Giles, bold, . . . ):

( —1 if —1>0
QA5:<Q+5 |a+? :
L 0 otherwise.

\

Product conjunction (probabilistic, Goguen, algebraic product, . . .

o /\ B=a-p.
Drastic conjunction (weak, . .. ):
a iFfH=1,
ahPb=<LpF fa=1

D
0 otherwise.

(e
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Basic fuzzy conjunctions
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standard product

tukasiewicz



Yager fuzzy conjunctions @
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o p B =max(1- ((a—1)"+(8-1)")%,0)
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a A B = max (1— ((a — 17 + (8 — 1)“")17]?0)
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Theorem:
Va,B €[0,1]: aA<aNnB<aAp.

D . o S

Proof: If « =1 or f =1, then (T4) gives the same result for all fuzzy conjunctions.
Assume (without loss of generality) that o < 5 < 1. Then

a/gﬁzoga/\ﬁgﬁ/\lzazaféﬁ.
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Properties of fuzzy conjunctions
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Theorem: Standard conjunction is the only one which is idempotent, i.e.,
Va e [0,1]:aNa =«

Proof: Assume o, € [0,1], a < B.

(T3) (T3)
a=aoaNa < aANf < oz/\l(T:Ll)afj

thusa/\ﬁ:a:a/s\ﬁ.
Analogously for a > 3.
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=

Proof: Assume «,f € |0, 1], |«
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Representation of fuzzy conjunctions (in general) \r
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Theorem: Let A be a fuzzy conjunction and 7 : [0, 1] — [0, 1] be an increasing bijection.

Then the operation A : [0, 1] — [0, 1] defined by

aNpB=1i"(i(a) Ni(B))

2 |
is a fuzzy conjunction. If A IS continuous, so is A

Proof:

e Commutativity (analogously for associativity):

aNB=i""(i(a) Ni(B)) =i (i(B) Ni(a)) =B A«

e monotonicity: Assume [ < 7.

i(B) < i),
o) Ai(B) < i(a)Ai()
aAB=ii(a) ANi(B)) < i'(i(a)Ai(y)) =a Ay
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e Boundary condition:

aAl=i"06(a)Ai(1) =i Yi(a)AL) =i (i(a)) = 28/12
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Continuous fuzzy conjunction A is
e Archimedean if
Va e (0,1): aNa<a (TA)
o strict if
Va € (0,1] VB,v € 10,1] : B<y=aAB<aly (T3+)

e nilpotent if it is Archimedean and not strict.

Example: Product conjunction is strict, tukasiewicz conjunction is nilpotent, standard and
drastic conjunctions are not Archimedean (the standard one violates (TA), the drastic one is
not continuous).
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Representation theorem for strict fuzzy conjunctions -
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Operation A : [0,1]* — [0, 1] is a strict fuzzy conjunction iff there is an increasing bijection

i :[0,1] — [0,1] (multiplicative generator) such that

a A B =i (i(a) Ai(B)) = i (i(a) - i(8)).

Sufficiency has been already proved (except for strictness which is easy).
The proof of necessity is much more advanced.

A multiplicative generator of a strict fuzzy conjunction is not unique.
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Foir
oA B =i (ie) NiB)) = i (i(a) - i(8)).

Sufficiency has been already proved (except for strictness which is easy).
The proof of necessity is much more advanced.

A multiplicative generator of a strict fuzzy conjunction is not unique.



@ o
Representation theorem for nilpotent fuzzy conjunctions b
31/72

Operation A : [0,1]? — [0, 1] is a nilpotent fuzzy conjunction iff there is an increasing

bijection 7 : [0,1] — [0, 1] (tukasiewicz generator) such that

alf = i (i) Ai(B)).

L

A tukasiewicz generator of a nilpotent fuzzy conjunction is not unique.

Theorem: Let A be a nilpotent fuzzy conjunction. Then
Va € (0,1) HREN:/\;C:laf:O

Proof: According to the representation theorem, it suffices (without loss of generality) to
prove the theorem for the tukasiewicz conjunction. For a sufficiently large n we obtain

a—l—i(&—1)<0, /\:zla:O.
=2 L
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is an operation on fuzzy sets defined using a fuzzy conjunction:
panpg(z) = pa(z) A pp(z)

(we distinguish them by the same indices as the respective fuzzy conjunctions)
Theorem: The standard intersection is cut-consistent.

Proof: 1. Cutworthiness:

RA@B(Q’) = {w e X: PJA@B(I) > af

= {zeX:(palr) 2 a)A(up(z) 2 a)}

= {reX:pualx)>atn{re X :uplx)> a}
Rala) N Rp(a)

2. Cuts Ra(o) N Rp(a) (for all a € (0,1]) determine a unique fuzzy set equal to AN B.



