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Requirements on the rule base [Moser, Navara 2002]

® Local correctness (interaction): Vj: ®(A4;) = C;.

¢ Strong completeness: V normal X € F(X): ®(X) £ () C;, where the fuzzy
intersection is standard (computed using min).

Weak interpolation property: ®(X) is in the convex hull of all C; with 7 such that
Supp A; N Supp X # 0.

Crisp correctness (crisp interaction): (A;(z) =1) = (®(z) = ®({z}) = C;) (“if
there is a totally firing rule, it determines the output").
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Completeness of the rule base

36/77

Completeness is required, because in any situation we need at least one firing rule.

Nevertheless, non-completeness is sometimes tolerated for the following reasons:

¢ In expert systems; “l don't know" could be a legitimate answer (of an expert system,
not of a pilot!).

® The input is impossible (then do not include it in the input space!).
® The input values are fuzzified so that they always overlap with some antecedent.

® The sparse database is used for interpolation [Koczy et al. 1997].

@ Some inputs do not require any action (we just wait until the situation changes).

The latter case can be formally described by an additional “else rule”
‘Amato, Di Nola, Navara 2003].

t is treated differently w.r.t. other requirements.

n any case, it assumes that we assign a meaning of “no action".

the output variable has to be defined always.
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Completeness of the rule base

37/77

Omitting rules for some situations is motivated by the attempt to reduce the number of
rules (curse of dimensionality).

Sometimes the table of linguistic rules does not cover some combinations of linguistic

variables.
This does not obviously mean that the antecedents are not complete; the case may be

covered by neighbouring rules, although with a smaller degree of firing.
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When Vj : ®(A;) = A; © Rva = C;? (A system of fuzzy relational equations for a fuzzy

relation Rya.)
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Correctness of Mamdani—Assilian controller

relation Rya.)

For Mamdani—Assilian controller:
Theorem: Vj : ®ya(A4;) > C;

Proof: X := A,
D(X,A;) =D(A4;,A;) =1 (due to normality)
Pma(A;5)(y) = max(D(A4;, Ai) A Ci(y)) = D(4;, A;) ACi(y) = Cj(y)

1
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Correctness of Mamdani—Assilian controller

Theorem [de Baets 1996, Perfilieva, Tonis 1997]: (Vj : ®ma(A4;) = C;) iff

(Vi Vi : D(Ai, 4;) < Z(Cy, Cy)),
where Z(C;, C;) = ir;f(Cé(y) — C; (y))

(the implication — has to be the residuum of A)

Instead of I(C;,C;) we may use £(C;,C;) = inf(C@;(y) S Cj(y))
7 .

(degree of indistinguishability (equality)),

where a(—_)ﬁ:min(oaﬁﬁ,ﬁﬁa):(aﬁﬁ)/_\(ﬁf}a)

Proof: The negation of the left-hand side is
37 3y : Pmal(4;)(y)
3j Jy 3z : Aj(z) A Rua(z,y)
3i 3j Jy 3z : Aj(z) A Ai(z) A Cily)
3i 35 Fy Fz: Aj(x) A Ai(z)
3 35 : sup(A,(z) A Ai(x))

which is the negation of the right-hand side.
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Correctness of Mamdani—Assilian controller

Theorem [de Baets 1996, PerfilievaL_Tonis 1997]. (‘v’j : Oua(4;) = Cj) itf
(Vi Vj : D(A;, A;) < T(Ci, Cj)) A L(Cj, bt |
where Z(C;, C;) = inf (Ci(y) — Cj(y))

7 .

(the implication — has to be the residuum of A)

Instead of I(C;,C;) we may use £(C;,C;) = inf(C?:(y) <~ Cj(y))
i .

(degree of indistinguishability (equality)),
where a <> 8 = min(a — 5,8 = a) = (a— ) A (8 — «)

Proof: The negation of the left-hand side is

T+ dj: Sl;p(Aj(iE) /\ Aa(ﬁl)) > igf(Ci(y) — Cj(y))

which is the negation of the right-hand side.
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Correctness of Mamdani—Assilian controller @ .
[Moser, Navara 1999]
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If A\ has no zero divisors (e.g., the minimum or product), then D(A;, A;) < E(C;,C,) is

sat.isfied in two situations:
¢ £(C;,C5) > 0; then Supp C; = Supp C};, which is rather unusual,

¢ £(C;,Cj) =0; then D(A;, A;) =0, Supp A; N Supp A; = (); for continuous degrees of
membership, strong completeness is violated.
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This problem does not occur if A has zero divisors (e.g., the tukasiewicz t-norm)
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If A\ has no zero divisors (e.g., the minimum or product), then D(A;, A;) < E(C;,C,) is

sat.isfied in two situations:
¢ £(C;,C5) > 0; then Supp C; = Supp C;, which is rather unusual,

¢ £(C;,C;) =0; then D(A;, A;) =0, Supp A; N Supp A; = (); for continuous degrees of
membership, strong completeness is violated.

This problem does not occur if A has zero divisors (e.g., the tukasiewicz t-norm)

However, this choice may easily violate the strong completeness [Moser, Navara 1999]




Correctness of residuum-based controller
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Theorem: Vj : ®res(A;) < C;
Proof: X := A,

Pres(4)(y) = SUP(AJ' (x) /\ min(A;(z) 7 Ci(y)))

T 1

sup(A4;(z) A (4j(x) = Cj(y))) < Cj(y)

€I

INA

Theorem: If there is a fuzzy relation R such that Vj : A; 0 R = C}, then also Rges satisfies

these equalities (and it is the largest solution).

Proof: Vj Vx Vy :

Aj(z) AN R(z,y) < Cj(y)
R(z,y) < Ajx)—Cj(y)
R(Ta y) < m_in(A,i(m) —F C@(y)) = Rres(,y)



Correctness of residuum-based controller

Theorem: Vj : (I)RES(Aj)@jj
Proof: X := A,

41/77

Dres(A;)(y) = sup(A;(z) A min(A(z) = Ci(y)))

T 1

< sup(4;(z) A (4;(2) = Cj(y))) < Cj(y)
C___/_L

€I

Theorem: If there is a fuzzy relation R such tha(‘v”j : AjoR = Cilthen also Rges satisfies
these equalities (and it is the largest solution).

Proof: V) Va Vy

Ase) AR, y) = ch (y)
R(z,y) < Ajx) — C(y)

R(r,y) < min(Ai(z)— Ci(y)) = Rres(z,y)

1



What happens if correctness is violated? @ 8

Nothing serious, this is usually accepted and possibly compensated during the tuning 42/77

However, it causes a distorted interpretation of (possibly good) control rules




An alternative: CFR (Controller with conditionally firing

L

rules) [Moser, Navara 2002]

1st generalization of Mamdani—Assilian controller:
0:10,1] — [0,1] ... increasing bijection, e.g., o(t) =t", r > 1, or piecewise linear
Transformation of membership degrees in the input space X

The degrees of overlapping, D(A; 0 0, A; o p), may be made arbitrarily small

2nd generalization of Mamdani—Assilian controller:

o:[0,1] = [e,1] ... increasing bijection

(0<e<1)

Transformation of membership degrees in the output space Y
Output Y o o has to be transformed back by o!=1/,

so the inference rule is not compositional

(however, the computational complexity remains of the same order)

The degrees of equality, £(C; 0 0,C; 0 0), may be made arbitrarily large
We may satisfy D(A; 00, A;090) < E(Cio00,C;00)

43/771

Problem 1: D(X o p, A; o p) becomes also small, causing “irrelevant outputs" and violating

strong completeness

Problem 2: Correctness and strong completeness are “almost contradictory” for the

Mamdani—Assilian controller; sometimes they cannot be satisfied simultaneously for any

compositional inference rule
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An alternative: CFR (Controller with conditionally firing @ ®
rules)
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So far, we obtained a special case of the generalized FATI inference rule,
where  m;(a,b) = o(a) Ao(b), B=max, r(a,b)=p(a)Ab, Q=supocl~!

However, we need:

3rd generalization of Mamdani—Assilian controller:

For the degree of firing in the inference rule, replace the degree of overlapping D(X, A;)
with the normalized value — degree of conditional firing

D(X, A;)

" maxD(X, A,)
J

Ci(X)

All the above requirements (in particular correctness and crisp correctness) are satisfied if
[Moser, Navara 2002, Navara, St'astny 2002]:
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N
An alternative: CFR (Controller with conditionally firing @ o
rules)

a4/77
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where m(a,b) = o(a) Ao(b), B=max, r(a,b)=o(a)Ab Q=supooll

However, we need:

3rd generalization of Mamdani—Assilian controller:
For the degree of firing in the inference rule, replace the degree of overlapping D(X, A;)
with the normalized value — degree of conditional firing

D(X, A;)

" maxD(X, A,)
J

Ci(X)

All the above requirements (in particular correctness and crisp correctness) are satisfied if
[Moser, Navara 2002, Navara, St'astny 2002]:

'C1] Each antecedent is normal.

(C2] Each point of the input space belongs to the support of some antecedent.

'C3] No consequent is covered by the maximum all other consequents.
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a4/77

So far, we obtained a special case of the generalized FATI inference rule,
where m(a,b) = o(a) Ao(b), B=max, r(a,b)=o(a)Ab, Q= supooll

However, we need:

3rd generalization of Mamdani—Assilian controller:
For the degree of firing in the inference rule, replace the degree of overlapping D(X, A;)
with the normalized value — degree of conditional firing

D(X, A;)

" maxD(X, A,)
J

Ci(X)

All the above requirements (in particular correctness and crisp correctness) are satisfied if
[Moser, Navara 2002, Navara, St'astny 2002]:

(C1] Each antecedent is normal.
(C2] Each point of the input space belongs to the support of some antecedent.

'C3] No consequent is covered by the maximum all other consequents.

C4] “Weak disjointness of antecedents": Jc < 1: A;(x) A A;j(x) < ¢ whenever i # j.




Comparison of Mamdani—Assilian and CFR controller —
block diagrams

(®

D(X, A;)
X degrees of c-omp05|— Y | defuzzi-
- . tional < I
overlapping fication
" rule
A; Cs;
rule base
o(X) D(X, A;) Ci(X) o(Y)
X rescaling degrees of | . ,degrge.s of ] c.omposi- rescaling
— verlanping conditional tional . [—1]
e PPINg firing " rule 7
o(A;) o (C})

rescaled rule base

- defuzzi-

fication
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Sample problem: ball on beam (ball on plate)

46/77

We want to stabilize a position of a ball by leaning a plate on which it lies
Static friction is considered (= non-linearity)

Solution due to [St'astny 2001]




Example: Comparison of Mamdani—Assilian and CFR
controller — position (premises)

0.9

membership [-]
o o o o o o
L $a Ln o | o

o
N

0.1

mala negpositon mala pos.

(®

""" Velka neg.

"

__________ velka é‘p'os; ______

-0.05 0

position [—]

0.05 0.1

|
0.15 0.2
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Example: Comparison of Mamdani—Assilian and CFR
controller — velocity (premises)

(@)

NS velocity PS
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I I
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velocity [—]
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Example: Comparison of Mamdani—Assilian and CFR @ .
controller — angle (consequents)

49/77

NS angle PS

0.9

membership [-]
o = o o o
Fa Ln h =] co
| [ I I I

o
w
|

Q2 =

QL =

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 015 2
angle [rad]



Example: Comparison of Mamdani—Assilian and CFR
controller — rules

(®

Angle:
position | NB | NS | ZO | PS | PB
velocity

NB PB | PB | PB | PB | PS
NS PB|PS|PS|PS|ZO
JA® PB | PB|ZO | NB | NB
PS ZO | NS | NS | NS | NB
PB NS | NB | NB | NB | NB

50/77
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Example: Comparison of Mamdani—Assilian and CFR
controller — quality of control

51/77|
criterion Mam. controller | CFR controller
maximum overshoot [m] o - -
asymptotic value [m] 4. -0.0021 0.0012
number of extremes [-] - -
transient time [s] 3.56 3.05
cumulative quadratic error [ms] 0.0552 0.0569

Ball on plate, initial position +0.25, simulation time 5 s — till steady state. Smaller values —
better control. Toyr = 100 ms

criterion Mam. controller | CFR controller
maximum overshoot [m] o - -
asymptotic value [m] 4. -0.0052 -0.0006
number of extremes [-] - -
transient time [s] 18.06 17.22
cumulative quadratic error [ms] 23.12 22.34

Ball on plate, initial position 4+2.00, simulation time 20 s — till steady state. Smaller values
— better control. Ty = 100 ms




Example: Comparison of Mamdani—Assilian and CFR

controller — quality of control

(e

criterion Mam. controller | CFR controller
maximum overshoot [m] o 0.35 0.35
asymptotic value [m] 4. -0.0032 -0.0041
number of extremes [-] 1 1
transient time [s] 13.49 11.39
cumulative quadratic error [ms] 0.523 0.474

Ball on plate, initial speed 0.5ms™

— better control. Toyr = 50ms

1

criterion Mam. controller | CFR controller
maximum overshoot [m] o 0.346 0.346
asymptotic value [m] 4. 0.0051 0.0034
number of extremes [-] 1 1
transient time [s| 14.8 11.1
cumulative quadratic error [ms] 0.583 0.441

52/77

, simulation time 15 s — till steady state. Smaller values

Ball on plate, initial speed 0.5ms !, simulation time 15 s — till steady state. Smaller values

— better control. Ty = Sms



Example: Comparison of Mamdani—Assilian and CFR
controller — outputs

53/77

magnitude [m/s]
s ob
= [
(=g’ £

magnitude [m]

S

=

oo

maanitude [m]

0 1 5
time [s] time [5]
angle position +wvelocity (detail) angle posiion +wvelocity (detail)
0.1 01 T T T 0.05 0.1 T T T
— 0.05 : / \ : — 0.05
0.05 £ 0 : ; Eu
= 0 = .05
& E .05 & g —.05
I = - a = 5
= = E =]
-0.05 g -1 g
’ 01 ’ 0.1
01 -0.15 : : : —015 ' ' ' ' —0.15 : :
0 1 2 3 4 5 1.5 2 2.5 3 3.5 0 1 2 3 4 5 1.5 2 25 3.5
time [5] time [s] time [s] time [s]

Typical outputs of Mamdani—Assilian controller (left) and CFR controller (right)
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Problems of implementation of CFR controller o
54/77

Software implementation: only three new blocks requiring a few lines of source code
The computational complexity slightly increases, but its order remains unchanged

Hardware implementation: Requires to add an additional block inside the current
structure, thus a totally new design of an integrated circuit - expensive!

Looking for a possibility to achieve the same control action using current fuzzy hardware and
a modified rule base, we have found [Amato, Di Nola, Navara 2003]:

1. it is not possible to substitute the CFR controller in its full generality, but

2. this is possible for crisp input variables

This case is still of much importance, because it covers most of applications;
in fact, current fuzzy hardware works only with crisp inputs
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structure, thus a totally new design of an integrated circuit - expensive!

Looking for a possibility to achieve the same control action using current fuzzy hardware and
a modified rule base, we have found [Amato, Di Nola, Navara 2003]:

1. it is not possible to substitute the CFR controller in its full generality, but

2. this is possible for crisp input variables

This case is still of much importance, because it covers most of applications;
in fact, current fuzzy hardware works only with crisp inputs



Hardware implementation of CFR controller

55/77|
o(y)
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L | degrees of E tion;:?l Y__ defuzzi- rescaling Y
firing 1 rule fication ol
A e o || R

modified rule base
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Conclusion -
56/77

We formulated well motivated axioms for fuzzy controllers (approximators). They
cannot be satisfied by any controller using the classical compositional rule of inference

(including the Mamdani—Assilian controller). Our generalized controller satisfies them
under very general conditions.

Practical experiments show that our controller allows to achieve better results with the
same rule database.

The computational efficiency is basically the same as that of the Mamdani—Assilian
controller.

New results allow to transform the rule base (automatically) so that the current fuzzy
hardware could be used to implementation of our controller, although its performance
could not be achieved by the original Mamdani—Assilian controller.
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Initial rule base

57/77

Can be obtained by
¢ asking an expert
¢ observing him /her at work

¢ combination with analysis of a model (if available)

¢ a template for a similar problem

Automatic derivation of rules can be made by clustering methods in the space X x YV
The clusters are approximated by cylindrical extensions of antecedents and consequents
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In the phase of tuning, we may
¢ modify membership functions of antecedents and consequents
¢ add new rules

® delete irrelevant rules or join them with similar ones

by
® experimenting with the controller

@ observing a human controlling the system (interpretability is needed)

using
® neural networks,

® genetic algorithms, etc.
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¢ Center of area (gravity) — ignores the multiplicity of overlapping consequents
@ Center of sums — respects the multiplicity of overlapping consequents

¢ Center of largest area
e Continuity: sometimes violated
e Disambiguity: sometimes violated
e Computational complexity: moderate

e Plausibility: reasonable




P

Z
Methods of defuzzification -
62/77

¢ Center of area (gravity) — ignores the multiplicity of overlapping consequents
@ Center of sums — respects the multiplicity of overlapping consequents
¢ Center of largest area

e Continuity: sometimes violated

e Disambiguity: sometimes violated

e Computational complexity: moderate

e Plausibility: reasonable




P

Z
Methods of defuzzification -
63/77

¢ Center of area (gravity) — ignores the multiplicity of overlapping consequents
@ Center of sums — respects the multiplicity of overlapping consequents
¢ Center of largest area
¢ First/last of maxima
e Continuity: bad!
e Disambiguity: only due to an additional criterion
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¢ Center of area (gravity) — ignores the multiplicity of overlapping consequents
@ Center of sums — respects the multiplicity of overlapping consequents
¢ Center of largest area
@ First/last of maxima
e Continuity: bad!
e Disambiguity: only due to an additional criterion
e Computational complexity: low

e Plausibility: reasonable
g i ot )
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Center of area (gravity) — ignores the multiplicity of overlapping consequents
Center of sums — respects the multiplicity of overlapping consequents
Center of largest area
First/last of maxima
Middle of maxima
e Continuity: bad!
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e Computational complexity: low
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Center of area (gravity) — ignores the multiplicity of overlapping consequents

Center of sums — respects the multiplicity of overlapping consequents

Center of largest area

First/last of maxima

Middle of maxima

Any of maxima (chosen at random)

Continuity: bad!

Disambiguity: sometimes violated!
Computational complexity: low
Plausibility: reasonable

Can be applied to any form of consequents (not necessarily convex or even
non-numerical)

65/77




® & &6 ¢ ¢ ¢ o

Methods of defuzzification

66/77

Center of area (gravity) — ignores the multiplicity of overlapping consequents
Center of sums — respects the multiplicity of overlapping consequents

Center of largest area

First/last of maxima

Middle of maxima

Any of maxima (chosen at random)

Height defuzzification (each consequent is replaced by a singleton and their weighted
mean is computed)

e Continuity: good

e Disambiguity: none

e Computational complexity: low
e Plausibility: doubtful!

e Some features of fuzzy control are lost; in fact, crisp outputs of rules are combined
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Center of area (gravity) — ignores the multiplicity of overlapping consequents
Center of sums — respects the multiplicity of overlapping consequents

Center of largest area

First/last of maxima

Middle of maxima

Any of maxima (chosen at random)

Height defuzzification (each consequent is replaced by a singleton and their weighted
mean is computed)
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Center of area (gravity) — ignores the multiplicity of overlapping consequents
Center of sums — respects the multiplicity of overlapping consequents

Center of largest area

First/last of maxima

Middle of maxima

Any of maxima (chosen at random)

Height defuzzification (each consequent is replaced by a singleton and their weighted
mean is computed)

AN
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Problems of defuzzification:
¢ Multiple maxima

@ Continuous switching between rules

¢ If supports of consequents are not bounded, extending the universe may lead to
different outputs
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Uses rules in a generalized form
if X is A; then Y is f1(X) and

if X is A, then Y is f,,(X)
where f;, 2 = 1,...,n, may be arbitrary functions of the input variables
(usually linear)
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